Search results for " 58J60"

showing 3 items of 3 documents

Stress concentration for closely located inclusions in nonlinear perfect conductivity problems

2019

We study the stress concentration, which is the gradient of the solution, when two smooth inclusions are closely located in a possibly anisotropic medium. The governing equation may be degenerate of $p-$Laplace type, with $1<p \leq N$. We prove optimal $L^\infty$ estimates for the blow-up of the gradient of the solution as the distance between the inclusions tends to zero.

Applied Mathematics010102 general mathematicsMathematical analysisDegenerate energy levelsZero (complex analysis)Perfect conductorAnalysiGradient blow-upType (model theory)Conductivity01 natural sciences010101 applied mathematicsNonlinear systemMathematics - Analysis of PDEsFOS: MathematicsFinsler p-Laplacian0101 mathematicsPerfect conductorAnisotropy35J25 35B44 35B50 (Primary) 35J62 78A48 58J60 (Secondary)AnalysisAnalysis of PDEs (math.AP)MathematicsStress concentration
researchProduct

Gradient estimates for the perfect conductivity problem in anisotropic media

2018

Abstract We study the perfect conductivity problem when two perfectly conducting inclusions are closely located to each other in an anisotropic background medium. We establish optimal upper and lower gradient bounds for the solution in any dimension which characterize the singular behavior of the electric field as the distance between the inclusions goes to zero.

Finsler LaplacianApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisZero (complex analysis)Perfect conductorGradient blow-upConductivity01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsDimension (vector space)Settore MAT/05 - Analisi MatematicaElectric fieldSingular behaviorFOS: MathematicsMathematics (all)Primary: 35J25 35B44 35B50 Secondary: 35J62 78A48 58J600101 mathematicsPerfect conductorAnisotropyAnalysis of PDEs (math.AP)MathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Spectral multipliers and wave equation for sub-Laplacians: lower regularity bounds of Euclidean type

2018

Let $\mathscr{L}$ be a smooth second-order real differential operator in divergence form on a manifold of dimension $n$. Under a bracket-generating condition, we show that the ranges of validity of spectral multiplier estimates of Mihlin--H\"ormander type and wave propagator estimates of Miyachi--Peral type for $\mathscr{L}$ cannot be wider than the corresponding ranges for the Laplace operator on $\mathbb{R}^n$. The result applies to all sub-Laplacians on Carnot groups and more general sub-Riemannian manifolds, without restrictions on the step. The proof hinges on a Fourier integral representation for the wave propagator associated with $\mathscr{L}$ and nondegeneracy properties of the sub…

osittaisdifferentiaaliyhtälötsub-LaplacianApplied MathematicsGeneral Mathematicsharmoninen analyysi35L05 35S30 42B15 43A22 58J60Functional Analysis (math.FA)Mathematics - Functional Analysiseikonal equationMathematics - Analysis of PDEsMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: Mathematicswave equationsub-Riemannian manifoldMathematics::Differential Geometryspectral multipliermonistotFourier integral operatorAnalysis of PDEs (math.AP)Journal of the European Mathematical Society
researchProduct